smoothing error - traducción al ruso
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

smoothing error - traducción al ruso

GENERATES A FORECAST OF FUTURE VALUES OF A TIME SERIES
Expenential Smoothing; Holt-Winters; Double exponential smoothing; Peter R. Winters

smoothing error      

математика

ошибка сглаживания

smoothing error      
ошибка сглаживания
data smoothing         
DATASET MODIFICATION USING AN APPROXIMATING FUNCTION TO CAPTURE IMPORTANT PATTERNS IN THE DATA WHILE LEAVING OUT NOISE
Smoothed; Smoothes; Smoothly; Smoothest; Smoothdown; Smooth-down; Smoothes down; Smoothed down; Smoothing down; Data smoothing; Adaptive smoothening; Adaptive smoothing; Algorithms for smoothing; Smoothing algorithms

общая лексика

осреднение данных

Definición

ляпсус
м.
Ошибка, оговорка, досадный промах (обычно в устной речи и на письме).

Wikipedia

Exponential smoothing

Exponential smoothing is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned and easily applied procedure for making some determination based on prior assumptions by the user, such as seasonality. Exponential smoothing is often used for analysis of time-series data.

Exponential smoothing is one of many window functions commonly applied to smooth data in signal processing, acting as low-pass filters to remove high-frequency noise. This method is preceded by Poisson's use of recursive exponential window functions in convolutions from the 19th century, as well as Kolmogorov and Zurbenko's use of recursive moving averages from their studies of turbulence in the 1940s.

The raw data sequence is often represented by { x t } {\displaystyle \{x_{t}\}} beginning at time t = 0 {\displaystyle t=0} , and the output of the exponential smoothing algorithm is commonly written as { s t } {\displaystyle \{s_{t}\}} , which may be regarded as a best estimate of what the next value of x {\displaystyle x} will be. When the sequence of observations begins at time t = 0 {\displaystyle t=0} , the simplest form of exponential smoothing is given by the formulas:

s 0 = x 0 s t = α x t + ( 1 α ) s t 1 , t > 0 {\displaystyle {\begin{aligned}s_{0}&=x_{0}\\s_{t}&=\alpha x_{t}+(1-\alpha )s_{t-1},\quad t>0\end{aligned}}}

where α {\displaystyle \alpha } is the smoothing factor, and 0 < α < 1 {\displaystyle 0<\alpha <1} .

¿Cómo se dice smoothing error en Ruso? Traducción de &#39smoothing error&#39 al Ruso